Solution-processed, high-performance n-channel organic microwire transistors.

نویسندگان

  • Joon Hak Oh
  • Hang Woo Lee
  • Stefan Mannsfeld
  • Randall M Stoltenberg
  • Eric Jung
  • Yong Wan Jin
  • Jong Min Kim
  • Ji-Beom Yoo
  • Zhenan Bao
چکیده

The development of solution-processable, high-performance n-channel organic semiconductors is crucial to realizing low-cost, all-organic complementary circuits. Single-crystalline organic semiconductor nano/microwires (NWs/MWs) have great potential as active materials in solution-formed high-performance transistors. However, the technology to integrate these elements into functional networks with controlled alignment and density lags far behind their inorganic counterparts. Here, we report a solution-processing approach to achieve high-performance air-stable n-channel organic transistors (the field-effect mobility (mu) up to 0.24 cm(2)/Vs for MW networks) comprising high mobility, solution-synthesized single-crystalline organic semiconducting MWs (mu as high as 1.4 cm(2)/Vs for individual MWs) and a filtration-and-transfer (FAT) alignment method. The FAT method enables facile control over both alignment and density of MWs. Our approach presents a route toward solution-processed, high-performance organic transistors and could be used for directed assembly of various functional organic and inorganic NWs/MWs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ambipolar organic field-effect transistors based on solution-processed single crystal microwires of a quinoidal oligothiophene derivative.

A simple and versatile solution-processing method based on molecular self-assembly is used to fabricate organic single crystal microwires of a low bandgap quinoidal oligothiophene derivative. Individual single crystal microwire transistors present well-balanced ambipolar behaviour with hole and electron mobilities as high as 0.4 and 0.5 cm(2) V(-1) s(-1), respectively.

متن کامل

Charge injection engineering of ambipolar field-effect transistors for high-performance organic complementary circuits.

Ambipolar π-conjugated polymers may provide inexpensive large-area manufacturing of complementary integrated circuits (CICs) without requiring micro-patterning of the individual p- and n-channel semiconductors. However, current-generation ambipolar semiconductor-based CICs suffer from higher static power consumption, low operation frequencies, and degraded noise margins compared to complementar...

متن کامل

Use of a 1H-benzoimidazole derivative as an n-type dopant and to enable air-stable solution-processed n-channel organic thin-film transistors.

We present here the development of a new solution-processable n-type dopant, N-DMBI. Our experimental results demonstrated that a well-known n-channel semiconductor, [6,6]-phenyl C(61) butyric acid methyl ester (PCBM), can be effectively doped with N-DMBI by solution processing; the film conductivity is significantly increased by n-type doping. We utilized this n-type doping for the first time ...

متن کامل

Short-channel transistors constructed with solution-processed carbon nanotubes.

We develop short-channel transistors using solution-processed single-walled carbon nanotubes (SWNTs) to evaluate the feasibility of those SWNTs for high-performance applications. Our results show that even though the intrinsic field-effect mobility is lower than the mobility of CVD nanotubes, the electrical contact between the nanotube and metal electrodes is not significantly affected. It is t...

متن کامل

Solution-processed n-type fullerene field-effect transistors prepared using CVD-grown graphene electrodes: improving performance with thermal annealing.

Solution-processed organic field effect transistors (OFETs), which are amenable to facile large-area processing methods, have generated significant interest as key elements for use in all-organic electronic applications aimed at realizing low-cost, lightweight, and flexible devices. The low performance levels of n-type solution-processed bottom-contact OFETs unfortunately continue to pose a bar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 106 15  شماره 

صفحات  -

تاریخ انتشار 2009